ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2013-09-07
    Description: We have developed a fabric sensor knitted of tension-sensitive electro-conductive yarns. Each yarn has an elastic core, around which is wound two other separate, tension-sensitive electro-conductive threads, making this sensor inherently flexible and stretchable and allowing it to conform to any complicated surface on a robot, acting as a robotic skin. The pile-shaped surface of the sensor enhances its ability to detect tangential traction, while also enabling it to sense a normal load. Our aim is to use this sensor in applications involving relative sliding between its surface and a touched object, such as contact recognition, slip detection, and surface identification through a sliding motion. We carefully analyzed the static and dynamic characteristics of this sensor while varying the load and stretching force to fully understand its response and determine its degree of flexibility and stretchability. We found that a discrete wavelet transformation may be used to indicate stick/slip states while the sensor is sliding over surfaces. This method was then used to detect slippage events acting on the sensor's surface, and to decode textures in a classification test using an artificial neural network. Because of its flexibility and sensitivity, this sensor can be used widely as a robotic skin in humanoid robots.
    Print ISSN: 1530-437X
    Electronic ISSN: 1558-1748
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...