ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2013-09-07
    Description: Heterodyne generation of parallel random bit streams from chaotic emission of an optically injected semiconductor laser is investigated. The continuous-wave optical injection invokes chaotic dynamics in the laser. The broadband chaotic emission is detected through optical heterodyning and electrical heterodyning into different channels. The channels digitize the signals into parallel independent random bit streams. Because of efficient utilization of different portions of the chaos bandwidth, heterodyne detections enable parallel generation of random bit streams, offer high total output bit rates, and require no high-bandwidth analogue-to-digital converters. In the experiment, two optical heterodyne channels and four electrical heterodyne channels are implemented. Each channel is required to digitize only 2.5 GHz of a much broader chaos bandwidth. The sampling rate is 10 GHz with five least significant bits selected from every 8-bit sample. The total output bit rate reaches 100 Gb/s and 200 Gb/s for optical and electrical heterodyning, respectively. The standard test suite of the National Institute of Standards and Technology verifies the randomness of both individual and interleaved output bit streams.
    Print ISSN: 0018-9197
    Electronic ISSN: 1558-1713
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...