ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉It has long been recognized that the effects of superficial geological layers, or site effects, can play a major role on the seismic ground motion at the free surface. In this study, we compute wave propagation in a 2-D asymmetrical basin considering both soil non-linearity and pore-pressure effects. Equations of elastodynamics of wave propagation are solved using the spectral element method (SEM). The geometry of the basin gives rise to basin-edge generated waves, that are different for in-plane (P-SV) and out-of-plane (SH) wave propagation and resulting in different non-linear response. Moreover, the excess-pore pressure development in superficial liquefiable layers (effective stress analysis) brings larger deformation and loss of strength than the analysis without pore-pressure effects (total stress analysis). The coupling of vertically propagating waves and the waves specifically generated in 1-D model leads to waves whose amplitude and duration are higher than the 1-D case. This multidimensional effect increases material non-linearity. Such complex wavefield provokes larger deformation and higher pore-pressure rise that cannot be predicted by 1-D modelling. Therefore, our paper suggests the use of multidimensional modelling while studying seismic wave propagation in both linear and non-linear complex media.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...