ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-03-15
    Description: 1.Increasing levels of CO2 in the atmosphere are affecting ocean chemistry, leading to increased acidification (i.e., decreased pH) and reductions in calcium carbonate saturation state. 2.Many species are likely to respond to acidification, but the direction and magnitude of these responses will be based on interspecific and ontogenetic variation in physiology and the relative importance of calcification. Differential responses to ocean acidification among species will likely result in important changes in community structure and diversity. 3.To characterize potential impacts of ocean acidification on community composition and structure, we examined the response of a marine fouling community to experimental CO2 enrichment in field-deployed flow-through mesocosm systems. 4.Acidification significantly altered community structure by altering the relative abundances of species and reduced community variability, resulting in more homogenous biofouling communities from one experimental tile to the next both among and within the acidified mesocosms. Mussel (Mytilus trossulus) recruitment was reduced by over 30% in the elevated CO2 treatment compared to the ambient treatment by the end of the experiment. Strong differences in mussel cover (up to 40% lower in acidified conditions) developed over the second half of the 10-week experiment. Acidification did not appear to affect mussel growth, as average mussel sizes were similar between treatments at the end of the experiment. Hydroid (Obelia dichotoma) cover was significantly reduced in the elevated CO2 treatment after eight weeks. Conversely, the percent cover of bryozoan colonies (Mebranipora membranacea) was higher under acidified conditions with differences becoming apparent after six weeks. Neither recruitment nor final size of barnacles (Balanus crenatus) was affected by acidification. By the end of the experiment, diversity was 41% lower in the acidified treatment relative to ambient conditions. 5.Overall, our findings support the general expectation that OA will simplify marine communities by acting on important ecological processes that ultimately determine community structure and diversity.
    Keywords: Alkalinity, total; Aragonite saturation state; Benthos; Bicarbonate ion; Brackish waters; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Community composition and diversity; Containers and aquaria (20-1000 L or 〈 1 m**2); Coverage; Entire community; EXP; Experiment; Experiment week; Field experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Identification; Mesocosm label; Mortality/Survival; North Pacific; Number; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Proportion; Reed_Point_Marina; Replicate; Reproduction; Rocky-shore community; Salinity; Size; Temperate; Temperature, water; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 22239 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...