ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-03-15
    Description: Marine forests are shrinking globally due to several anthropogenic impacts including climate change. Forest-forming macroalgae, such as Cystoseira s.l. species, can be particularly sensitive to environmental conditions (e.g. temperature increase, pollution or sedimentation), especially during early life stages. However, not much is known about their response to the interactive effects of ocean warming (OW) and acidification (OA). These drivers can also affect the performance and survival of crustose coralline algae, which are associated understory species likely playing a role in the recruitment of later successional species such as forest-forming macroalgae. We tested the interactive effects of elevated temperature, low pH and species facilitation on the recruitment of Cystoseira compressa. We demonstrate that the interactive effects of OW and OA negatively affect the recruitment of C. compressa and its associated coralline algae Neogoniolithon brassica-florida. The density of recruits was lower under the combinations OW and OA, while the size was negatively affected by the temperature increase but positively affected by the low pH. The results from this study show that the interactive effects of climate change and the presence of crustose coralline algae can have a negative impact on the recruitment of Cystoseira s.l. species. While new restoration techniques recently opened the door to marine forest restoration, our results show that the interactions of multiple drivers and species interactions have to be considered to achieve long-term population sustainability.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcification rate of calcium carbonate; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Coast and continental shelf; Cystoseira compressa; DATE/TIME; Density; Dry mass; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Height; Identification; Julian day; Laboratory experiment; Macroalgae; Mass; Mediterranean Sea; Neogoniolithon brassica-florida; Number; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Other; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Plantae; Potentiometric; Potentiometric titration; Replicates; Rhodophyta; Sainte_Marguerite_Island; Salinity; Species; Species interaction; Surface area; Temperate; Temperature; Temperature, water; Temperature, water, standard deviation; Time in days; Treatment: pH; Treatment: temperature; Type
    Type: Dataset
    Format: text/tab-separated-values, 116448 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...