ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-03-15
    Description: Reliance on the marine environment for the provision of food is ever-increasing, but future climate change threatens production. Despite this concern, the impact on seafood quality and success of the seafood industry is unknown. Using a short-term study, we test these concerns using a major aquaculture species-Crassostrea gigas-exposing them to three acidification and warming scenarios: (1) ambient pCO2 (400 ppm) & control temperature (15°C), (2) ambient pCO2 (400 ppm) & elevated temperature (20°C), (3) elevated pCO2 (1,000 ppm) & elevated temperature (20°C). Oyster quality was assessed by scoring appearance, aroma, taste, and overall acceptability. A panel of five experts was asked to score nine oysters-three from each treatment-according to agreed criteria. Results indicate that these levels of acidification and warming did not significantly alter the sensory properties of C. gigas, and notably the overall acceptability remained unchanged. Non-statistically supported trends suggest that several sensory attributes-opacity, mouthfeel, aspect of meat, shininess, meat resistance, meat texture, and creaminess-may improve under acidification and warming scenarios. These findings can be considered positive for the future of the aquaculture and food sectors. Crassostrea gigas therefore is expected to remain a key species for food security that is resilient to climate change, whilst retaining its valuable attributes.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Comment; Crassostrea gigas; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Laboratory strains; Mollusca; Name; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Oyster; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric; Potentiometric titration; Replicate; Salinity; Salinity, standard deviation; Score; Single species; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperature; Temperature, water; Temperature, water, standard deviation; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 2207 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...