ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Marchitto, Thomas M; Lynch-Stieglitz, Jean; Hemming, Sidney R (2005): Deep Pacific CaCO3 compensation and glacial-interglacial atmospheric CO2. Earth and Planetary Science Letters, 231(3-4), 317-336, https://doi.org/10.1016/j.epsl.2004.12.024
    Publication Date: 2023-06-27
    Description: Benthic foraminiferal delta13C suggests that there was a net shift of isotopically light metabolic CO2 from the upper ocean into the deep ocean during the last glacial period. According to the 'CaCO3 compensation' hypothesis, this should have caused a transient drop in deep ocean CO3[2-] that was eventually reversed by seafloor dissolution of CaCO3. The resulting increase in whole-ocean pH may have had a significant impact on atmospheric CO2, compounding any decrease that was due to the initial vertical CO2 shift. The opposite hypothetically occurred during deglaciation, when CO2 was returned to the upper ocean (and atmosphere) and deep ocean CO3[2-] temporarily increased, followed by excess burial of CaCO3 and a drop in whole-ocean pH. The deep sea record of CaCO3 preservation appears to reflect these processes, with the largest excursion during deglaciation (as expected), but various factors make quantification of deep sea paleo-CO3[2-] difficult. Here we reconstruct deep equatorial Pacific CO3[2-] over the last glacial-interglacial cycle using benthic foraminiferal Zn/Ca, which is strongly affected by saturation state during calcite precipitation. Our data are in agreement with the CaCO3 compensation theory, including glacial CO3[2-] concentrations similar to (or slightly lower than) today, and a Termination I CO3[2-] peak of ~25-30 µmol kg**-1. The deglacial CO3[2-] rise precedes ice sheet melting, consistent with the timing of the atmospheric CO2 rise. A later portion of the peak could reflect removal of CO2 from the atmosphere-ocean system due to boreal forest regrowth. CaCO3 compensation alone may explain more than one third of the atmospheric CO2 lowering during glacial times.
    Keywords: Cadmium/Calcium ratio; DEPTH, sediment/rock; Manganese/Calcium ratio; PC; Piston corer; RC13; RC13-114; Robert Conrad; Zinc/Calcium ratio
    Type: Dataset
    Format: text/tab-separated-values, 202 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...