ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Several independent measurements of warmseason soil moisture and surface atmospheric variables recorded at the ARM Southern Great Plains (SGP) research facility are used to estimate the terrestrial component of landatmosphere coupling (LAC) strength and its regional uncertainty. The observations reveal substantial variation in coupling strength, as estimated from three soil moisture measurements at a single site, as well as across six other sites having varied soil and land cover types. The observational estimates then serve as references for evaluating SGP terrestrial coupling strength in the Community Atmospheric Model coupled to the Community Land Model. These coupled model components are operated in both a freerunning mode and in a controlled configuration, where the atmospheric and land states are reinitialized daily, so that they do not drift very far from observations. Although the controlled simulation deviates less from the observed surface climate than its freerunning counterpart, the terrestrial LAC in both configurations is much stronger and displays less spatial variability than the SGP observational estimates. Preliminary investigation of vegetation leaf area index (LAI) substituted for soil moisture suggests that the overly strong coupling between model soil moisture and surface atmospheric variables is associated with too much evaporation from bare ground and too little from the vegetation cover. These results imply that model surface characteristics such as LAI, as well as the physical parameterizations involved in the coupling of the land and atmospheric components, are likely to be important sources of the problematical LAC behaviors.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN48412 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 122; 21; 11,524-11,548; November 16, 2017
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...