ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: You may have heard the phrase as difficult as walking and chewing gum as a joking way of referring to something that is not difficult at all. Just walking, however, is not all that simple physiologically speaking. Even standing upright is an undertaking requiring the complex cooperation of multiple motor and sensory systems including vision, the inner ear, somatosensation (sensation from the skin), and proprioception (the sense of the body s parts in relation to each other). The compromised performance of any of these elements can lead to a balance disorder, which in some form affects nearly half of Americans at least once in their lifetimes, from the elderly, to those with neurological or vestibular (inner ear) dysfunction, to athletes with musculoskeletal injuries, to astronauts returning from space. Readjusting to Earth s gravity has a significant impact on an astronaut s ability to balance, a result of the brain switching to a different "model" for interpreting sensory input in normal gravity versus weightlessness. While acclimating, astronauts can experience headaches, motion sickness, and problems with perception. To help ease the transition and study the effects of weightlessness on the body, NASA has conducted many investigations into post-flight balance control, realizing this research can help treat patients with balance disorders on Earth as well. In the 1960s, the NASA-sponsored Man Vehicle Laboratory at the Massachusetts Institute of Technology (MIT) studied the effects of prolonged space flight on astronauts. The lab s work intrigued MIT doctoral candidate Lewis Nashner, who began conducting NASA-funded research on human movement and balance under the supervision of Dr. Larry Young in the MIT Department of Aeronautics and Astronautics. In 1982, Nashner s work resulted in a noninvasive clinical technique for assessing the cooperative systems that allow the body to balance, commonly referred to as computerized dynamic posturography (CDP). CDP employs a series of dynamic protocols to isolate and assess balance function deficiencies. The technology was based on Nashner s novel, engineering-inspired concept of balance as an adaptable collaboration between multiple sensory and motor systems. CDP proved useful not only for examining astronauts, but for anyone suffering from balance problems. Today, CDP is the standard medical tool for objectively evaluating balance control.
    Keywords: Technology Utilization and Surface Transportation
    Type: Spinoff 2009; 34-35; NASA/NP-2009-09-607-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...