ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-28
    Description: This Section provides a brief introduction to airdata measurement and calibration. Readers will learn about typical test objectives, quantities to measure, and flight maneuvers and operations for calibration. The Section informs readers about tower-flyby, trailing cone, pacer, radar-tracking, and dynamic airdata calibration maneuvers. Readers will also begin to understand how some data analysis considerations and special airdata cases, including high-angle-of-attack flight, high-speed flight, and nonobtrusive sensors are handled. This section is not intended to be all inclusive; readers should review AGARDograph 300, Volume 1, "Calibration of Airdata Systems and Flow Direction Sensors" for more detailed information. [11-1] References 11-2, 11-3, and 11-4 also supply pertinent information to better understand airdata measurement and calibration and related terminology. Airdata are vital to successfully complete an aircraft's mission and are derived from the air surrounding the aircraft. These airdata encompass indicated and true airspeed, pressure altitude, ambient air temperature, angles of attack and sideslip, Mach number, and rate of climb. Typically, pitot and static pressures are sensed and converted (by mechanical means in the instruments themselves) into indications on the altimeter, vertical speed indicator, airspeed indicator, and Machmeter. Similarly, measured local flow angles establish angles of attack and sideslip, and the outside air temperature is measured and indicated in the cockpit. (Instruments that can perform the conversion, such as airspeed indicators, altimeters, and Machmeters, do not correct for errors in the input values.) These measured parameters are commonly input to the airdata computer which, using appropriate algorithms and correction factors (or calibrations, as discussed later), can provide other parameters, such as true airspeed, required by the aircraft's avionics or flight control system. The presence of the aircraft in the airstream causes input errors to the measuring instruments - the aircraft disturbs the air that it flies through, thereby also disturbing the airdata measurements. Figure 11-1 shows the airflow around an airplane wing. The air above the wing has lower pressure than the ambient air, while the pressure below the wing is higher than the ambient air. Compressibility and shock waves also disturb the air and affect the measurements. Compressibility effects become important above approximately Mach number 0.3. As a result the static pressure around an airplane varies considerably with location. Local flow angles also differ from the free-stream flow direction. In straight-and-level flight the airflow rises to the wing leading edge and falls below the trailing edge, causing errors in flow direction measurements. To some extent these errors can be studied in wind tunnels, but wind-tunnel measurements cannot replace in-flight measurements.
    Keywords: Avionics and Aircraft Instrumentation
    Type: Introduction to Flight Test Engineering, Volume 14; 11-1 - 11-17; RTO-AG-300-Vol-14
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...