ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-16
    Description: In this project we examine non-coalescence and non-wetting phenomena driven by either thermocapillary convection or forced motion of one surface relative to the other. In both cases, the non-coalescence or non-wetting is enabled by the existence of a lubricating layer of gas that exists to keep the two surfaces in question from coming into contact with one another. Recent progress has been made on several fronts: 1) measurement of the vibrational modes of pinned droplets; 2) development of an apparatus for the measurement of the frictional forces associated with a non-wetting droplet sliding over a solid surface; 3) measurements of the failure modes for non-wetting droplets and the influence of static electric charge on failure-, and 4) numerical simulation of a two-dimensional non-wetting droplet revealing a possible explanation for why the phenomenon has not been able to be observed using water as the droplet liquid. Issue 1) above is of relevance to the use of non-wetting droplets as positioning mechanisms and vibration dampers in a microgravity environment; issue 2) relates to the use of non-wetting droplets as nearly 'frictionless' bearings in low-load applications. Understanding of the failure modes identified in 3) is of importance to any potential application and the numerical simulations conducted under 4) allow us to obtain information about these systems that is currently not available through experimentation Each of these topics will be discussed briefly during the presentation.
    Keywords: Space Processing
    Type: Sixth Microgravity Fluid Physics and Transport Phenomena Conference; 1; 293-324; NASA/CP-2002-211212/VOL1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...