ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-17
    Description: Richtmyer-Meshkov (R-M) instability occurs when two different density fluids are impulsively accelerated in the direction normal to their nearly planar interface. The instability causes small perturbations on the interface to grow and possibly become turbulent given the proper initial conditions. R-M instability is similar to the Rayleigh-Taylor (R-T) instability, which is generated when the two fluids undergo a constant acceleration. R-M instability is a fundamental fluid instability that is important to fields ranging from astrophysics to high-speed combustion. For example, R-M instability is currently the limiting factor in achieving a net positive yield with inertial confinement fusion. The experiments described here utilize a novel technique that circumvents many of the experimental difficulties previously limiting the study of the R-M instability. A Plexiglas tank contains two unequal density liquids and is gently oscillated horizontally to produce a controlled initial fluid interface shape. The tank is mounted to a sled on a high speed, low friction linear rail system, constraining the main motion to the vertical direction. The sled is released from an initial height and falls vertically until it bounces off of a movable spring, imparting an impulsive acceleration in the upward direction. As the sled travels up and down the rails, the spring retracts out of the way, allowing the instability to evolve in free-fall until impacting a shock absorber at the end of the rails. The impulsive acceleration provided to the system is measured by a piezoelectric accelerometer mounted on the tank, and a capacitive accelerometer measures the low-level drag of the bearings. Planar Laser-Induced Fluorescence is used for flow visualization, which uses an Argon ion laser to illuminate the flow and a CCD camera, mounted to the sled, to capture images of the interface. This experimental study investigates the instability of an interface between incompressible, miscible liquids with an initial sinusoidal perturbation. The amplitude of the disturbance during the experiment is measured and compared to theory. The results show good agreement (within 10%) with linear stability theory up to nondimensional amplitude ka = 0.7 (wavenumber x amplitude). These results hold true for an initial ka (before acceleration) of -0.7 less than ka less than -0.06, while the linear theory was developed for absolute value of ka much less than 1. In addition, a third order weakly nonlinear perturbation theory is shown to be accurate for amplitudes as large as ka = 1.3, even though the interface becomes double-valued at ka = 1.1. As time progresses, the vorticity on the interface concentrates, and the interface spirals around the alternating sign vortex centers to form a mushroom pattern. At higher Reynolds Number (based on circulation), an instability of the vortex cores has been observed. While time limitations of the apparatus prevent determination of a critical Reynolds Number, the lowest Reynolds Number this vortex instability has been observed at is 5000.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fifth Microgravity Fluid Physics and Transport Phenomena Conference; 1289-1291
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...