ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-10
    Description: Terrestrial ages of meteorites from hot deserts provide an important tool to estimate meteorite fluxes to the Earth. Most desert meteorites have terrestrial ages less than 40 ky, but a few achondrites from the Sahara region were recently shown to have significantly higher ages, up to approx.100 ky. In general, C-14 (half-life = 5730 y) is the most suited radionuclide to determine terrestrial ages for desert meteorites. However for meteorites with ages 〉35 ky, the concentration of cosmogenic C-14 has decreased to a level at which it becomes difficult to distinguish between cosmogenic C-14 and terrestrial contamination. These meteorites may therefore be much older than 35 ky. We selected chondrites with low C-14 activities (less than or equal to 2 dpm/kg) for measurements of the concentrations of cosmogenic Cl-36 (half-life= 3.01 x 10(exp 5) y) and Ca-41 (half-life= 1.04 x 10(exp 5) y) in the metal phase. Since the ratio of Ca-41/Cl-36 in the metal phase of chondrites is relatively constant and well known, the measured ratio is a direct measure of the terrestrial age]. A major problem is that most or sometimes all. of the metal in these old "hot desert" meteorites has been oxidized to hydrated Fe-Ni-oxides. Therefore, we also measured the concentrations of Be-10, Al-26 and Cl-36 in the stony phase in order to constrain the terrestrial age as much as possible.
    Keywords: Astrophysics
    Type: Workshop on Extraterrestrial Materials from Cold and Hot Deserts; 88-89; LPI-Contrib-997
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...