ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-17
    Description: The study of the behavior of granular materials such as sand is of great importance to the understanding of the response of foundations resting on surface and near-surface soil deposits. A clear understanding of the behavior of such materials can also provide insights into other related issues where low effective stresses are encountered such as liquefaction. The main sources of the constitutive and stability properties of cohesionless granular materials is interparticle friction, which in turn under low confinement stress levels is strongly affected by gravitational body forces under terrestrial (1 gravity) conditions. Under moderate-to-high stress levels, the influence of gravity on the behavior of experiments may not be pronounced and therefore the test results in a terrestrial environment may be acceptable for engineering purposes. However, the conduct of experiments on granular materials under very low stress levels and under quasi-static conditions can only be performed in a microgravity environment. A series of displacement-controlled cyclic triaxial compression experiments were performed in a SPACEHAB module on the Space Shuttle during the STS-79 mission to Mir in September, 1996, and the STS-89 mission in January, 1998. The experiments were conducted on six right cylindrical specimens 75 mm in diameter and 150 mm long at effective confining pressures of 0.05, 0.52 and 1.30 kPa. The results show very high peak strength friction angles in the range of 47.6 to 70.0 degrees, which are mainly due to overconsolidation and grain interlocking effects. It was observed that the residual strength levels were in the same range as that observed at higher confining stress levels. The dilatancy angles were unusually high in the range of 30 to 31 degrees. All specimens display substantial initial stiffnesses and elastic moduli during unloading and reloading events, which are nearly an order of magnitude higher than conventional theories predict. A periodic instability phenomenon which appears to result from buckling of multiple internal arches and columnar systems, augmented by stick-slips was observed in the experiments. Computed Tomography (CT) measurements revealed valuable data about the internal fabric and the specimens deformation patterns. Uniform diffuse bifurcation with multiple radial shear bands was observed in the specimens tested in a microgravity environment. In the axial direction, two major conical surfaces were developed. Spatial nonsymmetrical deformations were observed in specimens tested in terrestrial laboratory.
    Keywords: Engineering (General)
    Type: ASCE Alabama Section; Aug 05, 1999; Gulf Shores, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...