ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-28
    Description: The profiles and thicknesses of normal shock waves in argon at Mach numbers of 1.335, 1.454, 1.576, and 1-713 were determined experimentally by means of a free-molecule probe whose equilibrium temperature is related by kinetic theory to the local flow properties and their gradients. Comparisons were made between the experimental shock profiles and the theoretical profiles calculated from the Navier-Stokes equations, the Grad 13-moment equations, and the Burnett equations. New, very accurate numerical integrations of the Burnett equations were obtained for this purpose with results quite different from those found by Zoller, to whom the solution of this problem is frequently attributed. The experimental shock profiles were predicted with approximately equal success by the Navier-Stokes and Burnett theories, while the 13-moment method was definitely less satisfactory. A surprising feature of the theoretical results is the relatively small difference in predictions between the Navier-Stokes and Burnett theories in the present range of shock strengths and the contrastingly large difference between predictions of Burnett and the 13-moment theories. It is concluded that the Navier-Stokes equations are correct for weak shocks and that within the present shock strength range the Burnett equations make no improvement which merits the trouble of solving them. For shocks of noticeably greater strength, say with a shock Mach number of more than 2.5, it remains fundamentally doubtful that any of these theories can be correct.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-MEMO-12-14-58W
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...