ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2019-07-13
    Beschreibung: Accurate non-invasive mechanical measurement of long bones is made difficult by the masking effect of surrounding soft tissues. Mechanical response tissue analysis (MRTA) offers a method for separating the effects of the soft tissue and bone; however, a direct validation has been lacking. A theoretical analysis of wave propagation through the compressed tissue revealed a strong mass effect dependent on the relative accelerations of the probe and bone. The previous mathematical model of the bone and overlying tissue system was reconfigured to incorporate the theoretical finding. This newer model (six-parameter) was used to interpret results using MRTA to determine bone cross-sectional bending stiffness, EI(sub MRTA). The relationship between EI(sub MRTA) and theoretical EI values for padded aluminum rods was R(sup 2) = 0.999. A biological validation followed using monkey tibias. Each bone was tested in vivo with the MRTA instrument. Postmortem, the same tibias were excised and tested to failure in three-point bending to determine EI(sub 3-PT) and maximum load. Diaphyseal bone mineral density (BMD) measurements were also made. The relationship between EI(sub 3-PT) and in vivo EI(sub MRTA) using the six-parameter model is strong (R(sup 2) = 0.947) and better than that using the older model (R(sup 2) = 0.645). EI(sub MRTA) and BMD are also highly correlated (R(sup 2) = 0.853). MRTA measurements in vivo and BMD ex vivo are both good predictors of scaled maximum strength (R(sup 2) = 0.915 and R(sup 2) = 0.894, respectively). This is the first biological validation of a non- invasive mechanical measurement of bone by comparison to actual values. The MRTA technique has potential clinical value for assessing long-bone mechanical properties.
    Schlagwort(e): Aerospace Medicine
    Materialart: NASA/CR-95-207219 , NAS 1.26:207219 , Journal of Biomechanics (ISSN 0021-9290); 29; 1; 91-98
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...