ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: We present analysis and numerical experiments on the instability of streamwise vortices in 'minimal channel' flows and argue that this instability is a key feature in the observed intermittent cycle of formation, break-up, and re-formation of these structures. The base flow is a three-component, two-dimensional pair of counter-rotating rolls with axes aligned along the direction of the mean shear. While it is not a steady solution to the Navier-Stokes equations, we show numerically that this flow is unstable on a fast time scale to a secondary, three-dimensional Floquet mode. The growth of the secondary instability does not saturate in a new equilibrium, but continues until highly unstable local shear layers form and the entire flow breaks down into turbulence. Our analysis is motivated in part by the strong similarities between the intermittent turbulent cycle in minimal channel flows and one studied, both experimentally and in computations, in Couette-Taylor flow.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Stanford Univ., Studying Turbulence Using Numerical Simulation Databases. 5: Proceedings of the 1994 Summer Program; p 229-244
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...