ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: Ozone is a key to understanding atmospheric chemistry on Mars. Over 20 photochemical models of the martian atmosphere have been published, and O3 is often used as a benchmark for these models. O3 abundance has been inferred from instrumentation on several spacecraft, with the most complete coverage provided by Mariner 9. The Mariner 9 UV spectrometer scanned from 2100 to 3500 Angstroms with a spectral resolution of 15 Angstroms and an effective field-of-view of approximately 300 sq km. The only atmospheric absorption in the 2000 to 3000 A wavelength region was previously assumed to come from the Hartley band system of ozone, which has an opacity of order unity at winter polar latitudes. Therefore, the amount of ozone was inferred by fitting this absorption feature with laboratory data of ozone absorption. Mars O3 shows strong seasonal and latitudinal variation, with column abundances ranging from 0.2 micron-atm at equatorial latitudes to 60 micron-atm over northern winter polar latitudes (1 micron-atm is a column abundance of 2.689 x 10 exp 15 molecules cm(exp -2)). However, the O3 abundance is never great enough to significantly affect atmospheric temperatures or surface temperatures and frost amounts. Some of the previously-inferred O3 abundances are shown. A radiative transfer computer model is used to re-examine the Mariner 9 UV spectra. Assuming a constant mixing ratio for O3 and no chemical or radiative interaction between O3 and clouds/dust, it is shown that when typical amounts of dust and cloud are present that significant underestimation of O3 abundance occurs. A factor of 3 times as much O3 is needed to generate the same spectrum the spacecraft would measure for a cloudy, dusty atmosphere as for a clear atmosphere. If the scattering properties of martian clouds and dust were well known, then their appearance would not be a problem, as a model would be capable of retrieving the O3 abundance. However, these properties are not well known, which raises doubts about the effectiveness of the UV reflectance spectroscopy technique for measuring O3 abundance on Mars.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Reanalysis of Mariner 9 UV Spectrometer Data for Ozone, Cloud, and Dust Abundances, and Their Interaction Over Climate Timescales; 7 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...