ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-01-25
    Description: This is one in a series of reports summarizing our chemical modeling studies of water-rock-gas interactions at the martian surface through time. The purpose of these studies is to place constraints on possible mineralogies formed at the martian surface and to model the geochemical implications of martian surficial processes proposed by previous researchers. Plumlee and Ridley summarize geochemical processes that may have occurred as a result of inferred volcano- and impact-driven hydrothermal activity on Mars. DeBraal et al. model the geochemical aspects of water-rock interactions and water evaporation near 0 C, as a prelude to future calculations that will model sub-0 C brine-rock-clathrate interactions under the current martian climate. In this report, we discuss reaction path calculations that model chemical processes that may have occurred at the martian surface in a postulated early, warm, wet climate. We assume a temperature of 25 C in all our calculations. Processes we model here include (1) the reaction of rainwater under various ambient CO2 and O2 pressures with basaltic rocks at the martian surface, (2) the formation of acid rain by volcanic gases such as HCl and SO2, (3) the reactions of acid rain with basaltic surficial materials, and (4) evaporation of waters resulting from rainwater-basalt interactions.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., MSATT Workshop on Chemical Weathering on Mars; p 31-32
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...