ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: We have developed a sensitive bolometric receiver for low background space applications. In a 10 percent bandwidth at 1 THz, this receiver is approximately 100 times more sensitive than a quantum limited heterodyne receiver with a 1 GHz IF bandwidth. This receiver is designed to be used for the long wavelength band (200-700 microns) in the MIPS instrument on NASA's SIRTF satellite. The bolometers are cooled to 100 mK by an adiabatic demagnetization refrigerator. Roughly 60 g of cesium chrome alum salt is partially demagnetized to 100 mK, followed by a slow regulated downramp to compensate for the heat leak. The hold time of the ADR system is about 18 hours with a temperature stability of delta T(sub rms) approx. equals 10 micro-K. The composite bolometers have electrical responsivities of 10(exp 9)V/W and electrical NEP's of about 3x10(exp -17) W/square root of Hz. The bolometer signals are read out by JFET preamplifiers located on the helium plate and operated at 120 K. We have addressed a number of space qualification issues, such as the development of an analog magnet controller, construction of a cryogenic shake-table for bolometers and selection of the paramagnetic salt CCA which can survive a bakeout at 50 C. The receiver is scheduled to be flown in the spring of 1992 on a balloon telescope. This flight has a dual purpose. One is to provide realistic test of the capabilities of the new receiver. The other is to search for anisotropies in the cosmic microwave background on scales of a few degrees.
    Keywords: COMMUNICATIONS AND RADAR
    Type: Michigan Univ., The Third International Symposium on Space Terahertz Technology: Symposium Proceedings; p 678-687
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...