ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-29
    Description: A short description of the program Stardust whose goal is to study the formation and properties of high temperature particles and gases, including silicate and carbonaceous materials, that are of interest in astrophysics and planetary science, is given. The international program was carried out in microgravity conditions in parabolic flight. A description of the laboratory equipment, conceived to perform experimental tests in reduced gravity conditions, and which is based on the gas evaporation technique, is given. The gas evaporation technique utilizes one or more heated crucible to vaporize solids materials (SiO, Mg) in a low pressure of inert or reactive gas inside of a vacuum bell jar. The vapor pressures of the materials are controlled by the temperature of the crucibles. The temperature and pressure of inert gas are also controlled. By varying the vapor pressure relative to the gas temperature and pressure, the conditions for substantial grain condensation can be controlled and grain formation measured using light scattering techniques. Thus the partial pressure for grain condensation, can be measured as a function of temperature. The gas evaporation technique has the advantage that complex chemical systems can be studied by using multiple crucibles each containing solid source material. Experimental results and future trends are addressed.
    Keywords: ASTROPHYSICS
    Type: ESA, Environment Observation and Climate Modelling Through International Space Projects. Columbus Eight (COSY-8): Utilisation of Earth Orbiting Laboratories; p 325-329
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...