ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: An uncoupled boundary layer algorithm was combined with an inviscid core flow algorithm to model flows within supersonic engine inlets. The inviscid flow algorithm that was used was the LArge Perturbation INlet Code (LAPIN). The boundary layer and inviscid core flow algorithms were formulated in different manners. The boundary layer algorithm was two dimensional and solved in nonconservation form, while the core flow algorithm was one dimensional and solved in conservation form. In order to interface the two codes, the following modifications were important. The coordinate system was set up to maintain the parabolic nature of the boundary layer algorithm while approaching the one dimensional core flow solution far from a wall. The pressure gradient used in the boundary layer equation was calculated using the core flow values and the boundary layer equations, so the boundary layer solution smoothly approached the core flow values far from the wall. Flaring was used for the advection terms perpendicular to the core flow to maintain the stability of the algorithm. With these modifications, the combined viscous/inviscid algorithm matched well experimental observations of pressure distributions with a supersonic inlet.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 92-3083
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...