ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 53 (2002), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Is the composition of soil organic matter changed by adding compost? To find out we incubated biowaste composts with agricultural soils and a humus-free mineral substrate at 5°C and 14°C for 18 months and examined the products. Organic matter composition was characterized by CuO oxidation of lignin, hydrolysis of cellulosic and non-cellulosic polysaccharides (CPS and NCPS) and 13C cross-polarization magic angle spinning nuclear magnetic resonance (CPMAS 13C-NMR) spectroscopy. The lignin contents in the compost-amended soils increased because the composts contained more lignin, which altered little even after prolonged decomposition of the composts in soil. A pronounced decrease in lignin occurred in the soils amended with mature compost only. Polysaccharide C accounted for 14–20% of the organic carbon at the beginning of the experiment for both the compost-amended soils and the controls. During the incubation, the relative contents of total polysaccharides decreased for 9–20% (controls) and for 20–49% (compost-amended soils). They contributed preferentially to the decomposition as compared with the bulk soil organic matter, that decreased between 〈 2% and 20%. In the compost-amended agricultural soils, cellulosic polysaccharides were decomposed in preference to non-cellulosic ones. The NMR spectra of the compost-amended soils had more intense signals of O–alkyl and aromatic C than did those of the controls. Incubation for 18 months resulted mainly in a decline of O–alkyl C for all soils. The composition of the soil organic matter after compost amendment changed mainly by increases in the lignin and aromatic C of the composts, and compost-derived polysaccharides were mineralized preferentially. The results suggest that decomposition of the added composts in soil is as an ongoing humification process of the composts themselves. The different soil materials affected the changes in soil organic matter composition to only a minor degree.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...