ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 34 (1987), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Iron-, manganese-, or magnesium-deficiency has been induced in Euglena gracilis. Each arrests cell proliferation, decreases the intracellular content of the deficient metal, and increases that of several other metals. Light and electron microscopy of stationary phase cells reveal that Fe-deficient (-Fe) cells are similar in size and shape to control organisms. Magnesium-deficient (-Mg) cells, however, are larger, and approximately 14% are multilobed, containing 2 to 12 lobes of equal size emanating from a central region. Individual (-Mg) cells and each lobe of multilobed cells contain a single nucleus. Manganese-deficient (-Mn) organisms are morphologically more heterogeneous than (-Fe) or (-Mg) cells. Most are spherical and larger than controls. Approximately 15% are multilobed but, unlike (-Mg) cells, contain lobes of unequal size with either zero, one, or several nuclei present in each. Nuclei of (-Mn) cells differ in size and shape from those of control, (-Fe), or (-Mg) cells. All three deficient cell types accumulate large quantities of paramylon. Other cytoplasmic structures, however, appear normal. Addition of Fe, Mn, or Mg to the respective deficient stationary phase cultures reverses growth arrest and restores normal morphology. The results suggest that Fe-, Mn-, and Mg-deficiencies affect different stages of the E. gracilis cell cycle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...