ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of soil science 47 (1996), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: A combination of radiocarbon (14C) dating and biomarker analyses of the aliphatic hydrocarbons in soil lipids is proposed as a novel and improved method for studying the environmental history of peaty soils. The radiocarbon concentration of unfractionated bulk organic matter, hydrolysed soil residues and two lipid fractions (the aliphatic hydrocarbons and carboxylic acids) recovered from a stagnohumic gley soil, were compared using AMS (accelerator mass spectrometry) and radiometric 14C dating techniques. The radiocarbon ages recorded by the aliphatic hydrocarbon fractions were consistently older than those measured from the unfractionated soil, and were in most cases older than the residues remaining after acid hydrolysis. This pattern was observed at three different depths in the soil profile. The apparent age difference between the hydrocarbon fraction and its unfractionated substrate increased with depth. An abundance of long–chain n–alkanes, similar to those found in higher plant waxes, characterized the aliphatic hydrocarbon fraction from the deepest soil (at 21.5–24.5–cm depth). The radiocarbon age of this basal organic component (13470± 170 years bp) indicated that it derived from the initial re–establishment of vegetation on the local deglaciated landscape with the onset of the Windermere Interstadial (c. 14000–13000 14C years bp). Bulk organic detritus within the basal horizon dated at some 3000 years younger, and presumably as a result of the downward penetration and retention of some mobile organic residues produced later in the development of the soil profile. The survival and apparent stratigraphical stability of these recoverable aliphatic hydrocarbons provides the opportunity, via the development of AMS dating, to measure an unambiguous radiocarbon age for the origin of organic residues retained in soils and sediments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...