All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: An approximate hybrid approach to computing high-frequency body wave synthetic seismograms in 2-D and 3-D laterally varying layered structures containing thin transition layers is suggested. It combines the ray method with the matrix (reflectivity) method. The ray method is applied to thick layers with smooth variations of velocity and the reflectivity method is applied to thin transition layers. Alternatively, the method of summation of Gaussian beams is used instead of the ray method in the hybrid code. An algorithm and the relevant program package BEAM87, designed for such hybrid computations in 2-D laterally varying layered structures containing one laterally varying thin transition layer, are briefly described. The thin transition layer may represent a region of a high velocity gradient, a laminated region, a region of a low Q, etc. It is simulated by a stack of very thin layers. The accuracy of the hybrid computations is tested on 1-D models by the comparison with reflectivity-method computations. The hybrid method yields sufficiently accurate results for transition layers, the thickness of which is smaller than one half of the prevailing wavelength of the wavefield under consideration, particularly for small angles of incidence. For reflected waves, the best accuracy is obtained for subcritical reflections, but the accuracy is lower for critical and overcritical reflections. The accuracy in the critical region is improved, if the Gaussian beam summation method is used instead of the ray method in the hybrid scheme. Numerical examples of synthetic body wave seismograms for a laterally varying model containing thin transition layers of various types are presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...