ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 70 (1999), S. 2997-3006 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A detailed study of the harmonic technique, which exploits the generation of harmonics resulting from excitation of the nonlinearity of the single Langmuir probe characteristic, is presented. The technique is used to measure electron temperature and its fluctuations in tokamak plasmas and the technical issues relevant to extending the technique to high bandwidth (200 kHz) are discussed. The technique has been implemented in a fast reciprocating probe in the TEXTOR tokamak, gaining the ability to study denser and hotter plasmas than previously possible. A corrected analytical expression is derived for the harmonic currents. Measurement of the probe current by inductive pickup is introduced to improve electrical isolation and bandwidth. The temperature profiles in the boundary plasma of TEXTOR have been measured with high spatial (∼2 mm) and temporal (200 kHz) resolution and compared to those obtained with a double probe. The exact expansion of the probe characteristic in terms of Bessel functions is compared to a computationally efficient power series. Various aspects of the interpretation of the measurement are discussed such as the influence of plasma potential and density fluctuations. The technique is well suited to study fast phenomena such as transient plasma discharges or turbulence and turbulent transport in plasmas. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...