ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 2453-2459 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Multimode simulations of the evolution of the laser-driven, ablative Rayleigh–Taylor instability on planar, plastic targets are performed in three dimensions, with FAST3D–CM. The initial mass density target perturbations are random, with a power law dependence of k−2, a RMS surface finish of 0.1 μm, and perturbation wave numbers ranging from 2π/dmax to (square root of)2×(12π/dmax), for dmax=128 μm. At early nonlinear times, the perturbations grow to tile the target with approximately hexagonal bubbles that are of the shortest, initially seeded wavelengths not stabilized by density gradients. This tiling occurs on a time scale that is comparable to the eddy turnover time of the dominant bubble wavelength. When the target thickness is large compared to the dominant, short wavelengths, the bubbles continue to burn into the target and to evolve to progressively longer spatial scales. Predictions from second-order mode coupling and saturation models are found to be consistent with the simulation results.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...