ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 4583-4593 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The TRANSP code [R. V. Budny et al., Nucl. Fusion 35, 1497 (1995)] is used to construct comprehensive, self-consistent models for plasmas within the separatrix surface in the International Thermonuclear Experimental Reactor (ITER) [Technical Basis for the ITER Interim Design Report, Cost Review and Safety Analysis (International Atomic Energy Agency, Vienna, 1996)]. Steady state profiles of two plasmas from the ITER "Interim Design'' database are used. Effects of 1 MeV neutral beam injection, sawteeth mixing, toroidal field ripple, and helium ash transport are included. Results are given for the fusion rate profiles, and parameters describing effects such as the alpha particle heating of electrons and thermal ions, and the thermalization rates. The modeling indicates that the deposition of the neutral beam ions will peak in the plasma center, and the average beam ion energy will be half the injected energy. Sawtooth mixing will broaden the fast alpha profile. The toroidal ripple loss rate of alpha energy will be 3% before sawtooth crashes and will increase by a factor of 3 immediately following sawtooth crashes. Various assumptions for the thermal He transport and the He recycling coefficient at the separatrix Rrec are used. If the ratio of helium and energy confinement times, τ*He/τE is less than 15, the steady state fusion power is predicted to be 1.5 GW or greater. The values of the transport coefficients required for this fusion power depend on Rrec. If this is larger than about 0.5, and if the inward pinch is small the required He diffusivity must be much larger than that measured in tokamaks. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...