ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 3 (1991), S. 2401-2409 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Two-dimensional numerical simulations of compressible, subsonic, planar shear flows, are used to investigate the role of feedback in the reinitiation of vortex roll-up. The study deals with unforced, spatially evolving mixing layers for which the propagation of acoustic disturbances can be resolved and boundary effects are ensured to be negligible. The calculated pattern of coherent structures shows global self-sustaining instabilities in which new vortex roll-ups are triggered in the initial shear layer by pressure disturbances originating in the fluid accelerations downstream. This reinitiation mechanism, absent in the linear treatments of stability, is demonstrated conclusively here and examined as a function of Mach number and free-stream velocity ratio. The global instability becomes less efficient in reinitiating vortex roll-up in the initial shear layer when the acoustic propagation velocities on the sides of the mixing layer approach each other, i.e., as the incompressible regime is approached, and as the free-stream velocity ratios approach unity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...