ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 11958-11970 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We report high level ab initio calculations (treating correlation by second order Möller–Plesset perturbation theory, MP2) of a five-dimensional normal coordinate subspace of the potential and electric dipole hypersurfaces of the Cs conformer of dideuteromethanol, CD2HOH. Accurate vibrational variational calculations are carried out using a discrete variable representation (DVR) for the five anharmonically coupled modes (three coupled CH stretching and bending modes and the OH stretching and high frequency OH bending mode). The overtone spectra of the OH chromophore are calculated and analyzed in detail with respect to their anharmonic resonance dynamics leading to short time intramolecular vibrational redistribution (IVR) via the close resonance coupling of 5νOH (5ν1) with 4νOH+νCH(4ν1+ν2), as previously observed and assigned experimentally. While the assignment of the resonance is confirmed by the ab initio calculation, a sequence of calculations including various subspaces (two-dimensional to five-dimensional) lead to the conclusion that the resonance contains important contributions from coupling to the various bending modes, not just involving the CH– and OH stretching modes. Furthermore, even in the two-dimensional subspace the effective coupling constants k1112 and k1222 characterizing the resonance are not identical with the anharmonic potential constants C1112 and C1222 in the Taylor expansion of the potential, but rather an expansion to sixth order is needed to describe the resonance quantitatively. A similar conclusion holds true with other low order perturbation expansions of the resonance coupling, involving sequences of cubic couplings to other modes. We furthermore predict important resonances between OH stretching and OH bending also involving CH bending modes, which contribute to IVR at higher levels of excitation. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...