ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 114 (2001), S. 2430-2441 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We study the stretch dynamics of flexible dendritic polymers (dendrimers and stars) under external forces. We work in the framework of the bead-spring model with hydrodynamic interactions (HI) and take spacers of different length into account. The applied fields may, e.g., be of mechanical or electrical origin. We study the motion of a specific monomer, the time evolution of the stretch (the mean distance of the monomer on which the force acts from the center of mass of the polymer) and also the elastic moduli. We analyze how these dynamic properties depend on the underlying topology, i.e., on the number of generations for dendrimers and the length and number of branches for stars. As a special point we assess in how far the HI method utilized here (the Kirkwood–Riseman scheme) is stable for dendritic structures. Characteristic for the topology is the intermediate dynamics (between short and long times). It turns out that, different from stars, for dendrimers the stretch dynamics is for intermediate times close to logarithmic; hence the crossover in behavior at intermediate times is characteristic of the polymer's topology. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...