ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 4219-4229 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: An efficient implementation of microcanonical, classical variational transition-state theory based on the use of the efficient microcanonical sampling (EMS) procedure is applied to simple bond fissions in SiH2 and Si2H6 using recently constructed global potential-energy surfaces. Comparison is made with results of trajectory calculations performed on the same potential-energy surfaces. The predictions of the statistical theory agree well with and provide an upper bound to the trajectory derived rate constants for SiH2→SiH+H. In the case of Si2H6, agreement between the statistical theory and trajectory results for Si–Si and Si–H bond fission is poor with differences as large as a factor of 72. Moreover, at the lower energies studied, the statistical calculations predict considerably slower rates of bond fission than those calculated from trajectories. These results indicate that the statistical assumptions inherent in the transition-state theory method are not valid for disilane in spite of the fact that many of the mode-to-mode rate constants for intramolecular energy transfer in this molecule are large relative to the Si–Si and Si–H bond fission rates. There are indications that such behavior may be widespread among large, polyatomic molecules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...