ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 99 (1993), S. 7424-7430 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The Fourier transform microwave spectrum of the propane–water complex (C3H8–H2O) has been observed and analyzed. This spectrum includes transitions assigned to propane complexed with both the ortho and para nuclear spin confirmations of water. The rotational constants indicate that the vibrationally averaged structure has all four heavy atoms coplanar, with the water center of mass lying on or near the C2 axis of propane, inside the CCC angle, 3.76(±0.02) A(ring) from the propane center-of-mass, and 4.35(±0.02) A(ring) from the methylene carbon. The projection of the electric dipole onto the a inertial axis of the complex (0.732 D for the ortho state and 0.819 D for the para state) indicates that one of the protons of the water subunit lies on the C2 axis of the propane monomer, which is also the axis connecting the subunit centers of mass. The small projection of the dipole along the b axis (0.14 D for the ortho state and 0.38 D for the para state) is most consistent with an equilibrium structure in which all three atoms of the water lie in the CCC plane of propane, with torsional tunneling about the hydrogen bond occurring on the same time scale as the overall rotation. The small internal rotation tunneling splittings that occur in the rotational spectrum of the propane monomer are not observed in the spectrum of the complex.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...