ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 76 (1994), S. 4383-4389 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Homoepitaxy of silicon at low temperature has been achieved using low-energy mass selected silicon ion beams. Reflection high-energy electron diffraction and Rutherford backscattering spectrometry have been utilized to assess the quality of silicon films deposited from 15 eV 28Si+ beams in the temperature range of 50–350 °C. Auger electron spectroscopy was used to monitor the contaminant levels on the surfaces. The films deposited at 350 °C are epitaxial and of a quality near that of the original substrate. The growth rate at 350 °C is ≈200 times faster than that for solid phase epitaxy. At 50 and 200 °C layer-by-layer epitaxial growth was inhibited and evidence for formation of three-dimensional islands in the early stage of growth followed by transition to an amorphous phase was observed. The transition to an amorphous phase occurred at lower film thickness (smaller ion dose) for lower temperatures. It is shown that small amounts of N+2 impurity in the 28Si+ beam, sufficient to add 1.4 at. % N to the silicon film, result in amorphous films, even at the highest temperature used, 350 °C. The effects of substrate temperature, contamination, and surface damage on the growth mechanism are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...