ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 77 (1995), S. 2957-2973 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Fibrous and crystal structures of a helical polymer, poly-L-lactic acid (PLLA), were analyzed by using x-ray diffraction experiments. It was confirmed that the molecular residues were arranged on a nonintegral 10/3 helix as De Santis and Kovacs [Biopolymers 6, 299 (1968)] reported. The atomic positions in a monomeric unit, which were proposed by Hoogsteen, Postema, Pennings, ten Brinke, and Zugenmaier [Macromolecules 23, 634 (1990)], were validated. However, the previous reports on the positions of the two helical chains were found to be in error. The correct positions were determined. The second helical chain shifts from the base center by 0.45, 0.25, and 0.61 A(ring) along a, b, and c axes. Besides, the second chain rotates by 2.46° with respect to the first. Distribution function of the crystallites in various drawn fibers were determined as a function of spiral angle. Optical gyrations of PLLA and poly-D-lactic acid fibers were successfully measured by using high accuracy universal polarimeter, as functions of temperature and drawing ratio. By using x-ray data of the change of the fibrous structure by drawing treatments, the gyration tensor components of PLLA could be calculated. It is of great interest that gyration tensor component g33 along the helical axis is extremely large, ∼(3.85±0.69)×10−2, which corresponds to a rotatory power of (9.2±1.7)×103°/mm, about two orders of magnitude larger than those of ordinary crystals. This is the first experimental evidence that helical polymers will produce enormous optical activity in the solid state. Helical polymers will be important for the elucidation of gyro-optical properties of solids and promising for new optical applications utilizing their large optical activity. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...