ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The efficiency of silicon solar cells can be increased by reducing the recombination of minority carriers at the backsurface of a cell. This can be achieved by application of a low-high junction, commonly called a backsurface field (BSF). The dependence of the effective backsurface recombination velocity Seff of a BSF on the BSF doping profile and the base doping concentration was studied experimentally. The doping profiles were analyzed using sheet resistance measurements, stripping Hall measurements, and secondary ion mass spectrometry. The effective recombination velocity was obtained from photoconductivity decay probed with microwaves on symmetrical p+pp+ structures, and from photocurrent decay measurements on n+pp+ solar cells. The measured values of Seff were compared with calculated values, based on the measured doping profiles. Both from photoconductivity and photocurrent decay measurements, Seff was found to decrease with an increasing difference in acceptor concentration between the BSF and the base of the solar cell. The measured values of Seff, obtained with the two experimental techniques, are in agreement with each other. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...