ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Magnetoresistivity values of the order of 106% (and in some cases even higher) have been obtained in epitaxial AxB1−xMnO3−y (A=La,Nd; B=Ca,Sr,Ba) thin films grown by pulsed laser deposition. Ferromagnetic resonance experiments suggest a granular-type behavior with conducting ferromagnetic regions (Rcond〈10 mΩ cm) in a less conducting matrix (Rinsulazting(approximately-greater-than)100.Rcond). Ion channeling experiments over a range of temperatures clearly reveal the existence of structural distortion at the peak resistivity temperature TP. Systematic studies of samples prepared under a variety of oxygenation conditions show that the resistivity above TP can be modeled with a single functional form: Rcond≈eΔ/kT, where Δ, the activation energy, is of the order of 50–200 meV. This suggests that these different samples represent the same basic material in a semiconducting matrix, with differing volume fractions of the two components which depends on the processing conditions. These "colossal'' values of MR have been obtained at temperatures lower than room temperature and at fields of the order of a few Teslas, both of which are impediments to the development of viable MR sensor and nonvolatile storage technologies.We are therefore addressing the critical scientific and technological issues through a variety of materials integration approaches. Using structural chemistry and lattice matching as fundamental guiding principles, we are growing epitaxial heterostructure superlattices consisting of the CMR oxides interleaved with magnetic perovskites such as La–Sr–Co–O (metallic ferromagnet), rare earth–Fe–O (ferromagnetic insulator). We are also exploring the possibility of using the semiconducting properties of these materials in an all-perovskite field effect transistor device. In this presentation, we will describe our progress to date on these studies to enhance the field and temperature dependence of the MR properties and explore new device architectures that utilize the inherently novel properties of these materials. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...