ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 725-730 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Carbon and lithium spectra are obtained from vacuum spark discharges using a grazing-incidence flat-field spectrometer. Hydrogen and helium-like lines are identified in the carbon spectrum, where only the hydrogen-like lines are found in the lithium spectrum. The absence of the helium intercombination line in the carbon plasma indicates that the electron density is greater than 1×1019 cm−3. The electron density is found to be 2.8–4.4×1020 cm−3 for carbon and 7.3–10.2×1018 cm−3 for lithium plasma using the method of Stark width analysis for hydrogen-like carbon and lithium lines of the Lyman β and Lyman δ of each element. This method was developed and implemented earlier by E. V. Aglitskii, P. S. Antsiferov, I. M. Gaisinskii, E. A. Oks, and A. M. Panin (Institute of Spectroscopy Preprint #13, Troitzk, Moskow region, USSR, 1985). The Lyman β and Lyman δ lines are chosen for our analysis because these two lines do not have the central Stark components. A pinhole picture is obtained for the carbon plasma, and the pinch diameter is measured to be 100 μm from the equal density profile scan of the pinhole photograph. The optical depth and the escape factor are incorporated into the intensity calculation of the lines using an effective plasma size of 50 μm. In this calculation, the intensity ratio of the Lyman α to the helium-like γ line (1s4p→1s2) yields an electron temperature of about 90–95 eV for the carbon plasma. No temperature for the lithium was possible due to the unavailability of the helium-like lines. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...