ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 87 (2000), S. 5532-5534 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The underlying mechanism of coercivity in permanent magnets has been a topic of intense interest for many years. It is motivated by the fact that the measured coercivity approaches only 20%–40% of the theoretical nucleation fields as derived from micromagnetic theory. We address this problem by proposing an analytical model, within the framework of the micromagnetic approximation, to examine the mechanism of magnetization reversal in hard magnetic materials. The exchange interaction between neighboring grains with different easy axes orientations can result in the formation of a domain wall-like magnetization structure (transition region) in the grain boundary. We propose that the transition region can propagate between neighboring grains provided that it is energetically favorable. The subsequent nucleation of a domain wall is shown to reduce the critical field considerably. Applying our model to a thin film, whose magnetic grains have a randomly oriented in-plane easy axis distribution, we have calculated the coercivity for the film to be 0.14HK, where HK is the anisotropy field. It is found that the coercivity decreases with increasing film thickness. For a material with a three-dimensional random easy axis distribution, we obtain the coercivity as 0.16HK. These results are substantially lower than that given by the Stoner-Wohlfarth model and are consistent with available experimental results. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...