ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 88 (2000), S. 4531-4536 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Effects of gas density depletion on arc formation of high-pressure, pulsed glow discharge have been investigated by eliminating the other factors which may affect the discharge stability, such as shock waves, residual ions, electrode heating, and discharge products. The gas density depletion has been simulated by utilizing a subsonic gas flow between the curved electrodes combined with a convergent nozzle and a divergent diffuser. A comparison has been made on the discharge in the aerodynamically created gas density depletion with the second discharge in the double-pulse discharge within a stable gas. We have found that the large gas density depletion, Δρ/ρ0∼−3.6% corresponding to a pulse repetition rate (PRR) of ∼50 Hz, tends to cause an arc-like filament or an arc without the shocks, ions, electrode heating, and products. However, the second discharge in the double-pulse discharge becomes an arc in much smaller gas density depletion (Δρ/ρ0∼−1.2% corresponding to PRR ∼3 Hz). Therefore, the collapse of high-pressure, pulsed glow discharge is most likely caused by some factor other than the gas density depletion. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...