ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bradford : Emerald
    International journal of numerical methods for heat & fluid flow 15 (2005), S. 143-160 
    ISSN: 0961-5539
    Source: Emerald Fulltext Archive Database 1994-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Purpose - In oil and gas industries, the presence of sand particles in produced oil and natural gas represents a major concern because of the associated erosive wear occurring in various flow passages. Erosion in the tube entrance region of a typical shell and tube heat exchanger is numerically predicted. Design/methodology/approach - The erosion rates are obtained for different flow rates and particle sizes assuming low particle concentration. The erosion prediction is based on using a mathematical model for simulating the fluid velocity field and another model for simulating the motion of solid particles. The fluid velocity (continuous phase) model is based on the solution of the time-averaged governing equations of 3D turbulent flow while the particle-tracking model is based on the solution of the governing equation of each particle motion taking into consideration the viscous and gravity forces as well as the effect of particle rebound behavior. Findings - The results show that the location and number of eroded tubes depend mainly on the particle size and velocity magnitude at the header inlet. The rate of erosion depends exponentially on the velocity. The particle size shows negligible effect on the erosion rate at high velocity values and the large-size particles show less erosion rates compared to the small-size particles at low values of inlet flow velocities. Originality/value - In oil and gas industries, the presence of sand particles in produced oil and natural gas represents a major concern because of the associated erosive wear occurring in various flow passages. The results indicate that erosion in shell and tube heat exchanger can be minimized through the control of velocity inlet to the header.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...