ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1600-5740
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: The compounds analysed are the O,O′-dibenzoyl derivatives of (R,R)-tartaric acid, asymmetrically substituted by ester, amide and nitrile groups. Benzoylation does not introduce drastic changes to the molecular conformation. All investigated molecules adopt the planar T conformation of the four-carbon chain with noticeably smaller departures from the ideal conformation than observed in the nonbenzoylated analogs. Primary and secondary amides always orient the C=O bond antiperiplanar (a) with respect to the nearest C*—O bond, while methylester groups adjust their conformation to that adopted by the amide substituent situated at the other end of the molecule. Tertiary amides and carboxyl groups place their carbonyls at the same side as the nearest C*—O bond (the s form), but often deviations from coplanarity of the two bonds are significant and higher than those observed in the nonbenzoylated series. The results presented demonstrate the importance of dipole/dipole interactions between CO and βC*H groups in stabilizing the molecular conformation, and between carbonyl groups in stabilizing crystal packing of the molecules that lack classical hydrogen-bond donor groups. An illustration is provided as to how a small change in mutual orientation of molecules arranged in a close-packed fashion causes a change in the character of intermolecular interactions from van der Waals to sandwich stacking between the benzoyloxy phenyls, and to dipolar between the benzoyloxy carbonyls. Hydrogen-bonded molecules tend to orient in a head-to-tail mode; the head-to-head arrangement being limited to cases in which terminal carbonyl groups are situated at one side of the molecule. The orientation of the benzoyloxy substituents with respect to the carbon main chain is such that the (O=)C—O—C—H bond system often deviates significantly from planarity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...