ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 77 (1988), S. 577-589 
    ISSN: 1437-3262
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Abstract The detachment and imbrication of thrust slices at the front of a thrust wedge is one of the principle modes by which such wedges grow. Collapse of the frontal ramp under longitudinal compressional stress cannot explain the regular formation of new slices of finite length, unless there are regularly spaced heterogeneities in the footwall layer or the underlying basement surface. Advance of the thrust wedge over the frontal ramp, however, increases both the vertical load on the ramp and the traction on the upper flat. This will in general produce a peak deviatoric stress in the footwall layer below the leading edge of the thrust wedge. Failure will occur at this point when the thrust wedge has advanced a distance L such that the deviatoric stress in the footwall layer exceeds its strength. L is a function of (a) rock density, (b) ramp angle, (c) the resistances to motion on the basal detachment, the ramp, and the upper flat, and (d) the strength and thickness of the footwall layer. These mechanical parameters can therefore control the formation of new thrust slices of regular length in the absence of footwall heterogeneities. Continued accretion of thrust slices at the front of the wedge progressively diminishes its overall taper until it becomes mechanically unstable. Reactivation of previously formed thrusts is a likely response, and will alternate with or occur concurrently with frontal imbrication. Thrust reactivation occurs at a diminishing rate back from the wedge front and is the main cause of back-rotation of older thrust slices. Further back in the wedge, reactivation is not possible, because the thrusts are too steep and have strongly curved trajectories. Thickening of the wedge in this area must occur by out-of-sequence thrusting, backthrusting, or ductile deformation.
    Abstract: Résumé Le décollement et l'imbrication des écailles au front d'un prisme de chevauchement constituent un des mécanismes principaux par lequel de tels prismes s'accroissent. La destruction de la rampe frontale par l'effet de contraintes compressives longitudinales ne peut expliquer la formation régulière de nouvelles tranches de longueur limitée, à moins que l'on n'admette l'existence d'hétérogénéités régulièrement espacées situées dans le mur ou à la surface du socle sousjacent. Cependant, l'avancée du prisme de chevauchement au-dessus de la rampe augmente la charge verticale supportée par celle-ci ainsi que la contrainte cisaillante dans la partie supérieure du substratum. Cette situation tend à produire un maximum de la contrainte déviatorique dans le substratum au-dessous du bord frontal du prisme de chevauchement. La rupture se produira à cet endroit lorsque le prisme se sera avencé d'une distance L telle que la contrainte déviatorique dans le substratum dépasse la résistance propre de celui-ci. La longueur L est fonction: (a) de la densité de la roche, (b) de l'angle de la rampe, (c) des résistances à l'avancement sur le décollement principal, la rampe et la surface supérieure de la partie sous-jacente. Ces paramètres mécaniques déterminent donc la géométrie de la nouvelle écaille. L'accrétion répétée d'écaillés à l'avant d'un prisme en coin diminue progressivement son angle frontal jusqu' à ce qu'il devienne mécaniquement instable. Il peut en résulter une réactivation des surfaces de chevauchement formés précédemment, soit alternativement, soit concurremment à l'imbrication frontale. Cette réactivation est de moins en moins active vers l'arrière du dispositif; elle constitue la cause principale de la rotation des écailles plus anciennes. Dans la partie du prisme située plus en arrière, cette réactivation n'est guère possible, car les chevauchements y sont trop pentés et ont des trajectoires fortement incurvées. Dans cette zone, l'épaississement du prisme peut se produire grâce à des chevauchements hors séquence (recoupant les surfaces antérieures), à des rétrochevauchements ou à une déformation ductile.
    Notes: Zusammenfassung Die Abscherung und Anstapelung von Schuppen an die Stirn eines Schuppenkeils stellt eine der wichtigsten Wachstumsarten von Schuppenkeilen dar. Der Verbrach einer frontalen Rampe wird durch die von ihr getragene longitudinale Normalspannung hervorgerufen. Die Entstehung neuer gleichförmiger Schuppen mit begrenzter Länge lä\t sich durch diesen Verbruch nicht erklären, ohne da\ man Heterogenitäten in gleichmä\igen Abständen in der liegenden Schicht oder dem Unterbau annimmt. Dennoch steigert der Vortrieb über die frontale Rampe eines Schuppenkeils sowohl die vertikale Last auf der Rampe als auch die Geschiebelast auf dem oberen der Schichtung parallelen Teil der überschiebung (upper flat). Infolgedessen ist es wahrscheinlich, da\ der Spannungsdeviator im Liegenden unter der Vorderkante des Schuppenkeils ein Maximum erreicht. Ein Bruch entsteht dann, wenn die Schubweite des Schuppenkeils einen WertL erreicht hat, von dem ab der Spannungsdeviator im Liegenden grö\er ist als dessen Bruchfestigkeit.L. ist von folgenden Variablen abhängig: (a) der Gesteinsdichte (b) dem Rampenwinkel (c) dem Geschiebewiderstand auf der basalen Abscherungsbahn, der Rampe und dem oberen der Schichtung parallelen Teil der überschiebung (d) der Bruchfestigkeit und Dicke der liegenden Schicht. Diese mechanischen Parameter haben also einen starken Einflu\ auf die Geometrie der neuen Schuppe. Durch fortlaufende Anstapelung von Schuppen an die Stirn des Schuppenkeils wird die Steigung des Keils progressiv reduziert, bis er mechanisch unstabil wird. Es ist wahrscheinlich, da\ dadurch frühere überschiebungsbahnen reaktiviert werden, und da\ dies entweder abwechselnd oder gleichzeitig mit der frontalen Anschuppung stattfindet. Die Wahrscheinlichkeit einer Reaktivierung von überschiebungsbahnen nimmt mit wachsender Entfernung von der Keilstirn ab. Das Reaktivieren ist die Hauptursache für die Rückrotation von älteren überschiebungen. Im hinteren Teil des Schuppenkeils ist das Reaktivieren nicht möglich, weil die überschiebungsbahnen zu steil und zu stark gekrümmt sind. Eine Verdickung des Keils in diesem Bereich mu\ durch eine — mehrere ältere überschiebungen durchschneidende — überschiebung (out of sequence thrust), durch eine Rücküberschiebung, oder durch eine duktile Verformung geschehen.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...