ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract A sequence of ultramafic rocks in the Lac Guyer Archean greenstone belt exhibit brecciated flow tops, pillow structures, and spinifex textures testifying to their volcanic origin. Massive, spinifex-textured and differentiated flows in the sequence have the chemical characteristics of peridotitic komatiite, with MgO ranging from 19–25 wt.%. Associated pillowed flows have compositions that straddle the conventional boundary between komatiite and komatiitic basalt with MgO contents ranging from 16 to 19 wt.% MgO and are best termed pyroxenitic komatiites. Unlike other komatiitic occurrences, the peridotitic and pyroxenitic komatiites at Lac Guyer constitute a continuous chemical spectrum with no evidence of population minimum near 18 wt.% MgO. The contrasting behaviour of highly compatible elements, such as Ni and Cr, versus incompatible elements, such as Zr, indicate that this compositional spectrum was produced by a variation in the extent of partial melting (10–40%) of a garnet lherzolite source in the Archean mantle. The pyroxenitic komatiites represent liquids produced during lower (10–20%) degrees of melting during which garnet remained in the mantle residue. However, a change in slope in the distribution of Zr vs. Y between the pyroxenitic and the peridotitic komatiites indicates that garnet was completely consumed at the more extensive degrees of melting which produced the peridotitic komatiites. The Lac Guyer volcanic rocks display a population minimum at 15 wt.% MgO separating komatiitic magmas whose compositions are controlled by partial melting from basalts whose composition is controlled by crystal fractionation. The population minimum near 18 wt.% MgO which is taken as the boundary between komatiite and komatiitic basalt may have a similar origin.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...