ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 113 (1993), S. 352-366 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Low-Ca garnet harzburgite xenoliths contain garnets that are deficient in Ca relative to those that have equilibrated with diopside in the iherzolite assemblage. Minor proportions of these harzburgites are of wide-spread occurrence in xenolith suites from the Kaapvaal craton and are of particular interest because of their relation to diamond host rocks. The harzburgite xenoliths are predominantly coarse but one specimen from Jagersfontein and another from Premier have deformed textures similar to those of high-temperature peridotites. Analyses for many elements in the harzburgites and associated iherzolites form concordant overlapping trends. On the average, however, the harzburgites are deficient in Si, Ca, Al and Fe but enriched in Mg and Ni relative to the lherzolites. Both the harzburgites and lherzolites are enstatite-rich with mg numbers [100.Mg/(Mg+Fetotal)] greater than 92 and in these respects differ markedly from residues generated by extraction of MORB. Equilibration temperatures and depths calculated for the harzburgites have the ranges 600–1,400°C and 50–200 km. Those of deepest origin overlap the interval between low-and high-temperature lherzolites that commonly is observed in temperature-depth plots for the Kaapvaal craton, suggesting that some harzburgites may be concentrated relative to lherzolites at the base of the lithosphere. The low-Ca harzburgites and lherzolite xenoliths have overlapping depths of origin, gradational bulk chemical characteristics and similar textures, and therefore both are believed to have formed as residues of Archaen melting events. The harzburgites differ from the lherzolites only in that they are more depleted. Garnets and associated minerals in harzburgite xenoliths differ from minerals of the same assemblage that are included in diamonds in that the latter are more Cr-rich, Mg-rich and Ca-poor. Coarse crystals of low-Ca garnet with the compositional characteristics of diamond inclusions commonly occur as disaggregated grains in diamondiferous kimberlites. Their host rocks are presumed to have been harzburgites and dunites. The differences in composition between the disaggregated grains that are similar to diamond inclusions and those comprising xenoliths imply some differences in origin. Possibly the disaggregated harzburgites with diamond-inclusion mineralogy have undergone repeated partial melting and depletion near the base of the lithosphere subsequent to their primary depletion and aggregation in the craton. Equilibration with magnesite may have reduced the Ca contents of their garnets and decomposition of the magnesite during eruption may have caused their disaggregation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...