ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Mineralium deposita 34 (1999), S. 549-570 
    ISSN: 1432-1866
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The Iberian Pyrite Belt, located in the SW Iberian Peninsula, contains many Paleozoic giant and supergiant massive sulphide deposits, including the largest individual massive sulphide bodies on Earth. Total ore reserves exceed 1500 Mt, distributed in eight supergiant deposits (〉100 Mt) and a number of other smaller deposits, commonly with associated stockwork mineralizations and footwall alteration haloes. Massive sulphide bodies largely consist of pyrite, with subordinated sphalerite, galena and chalcopyrite and many other minor phases, although substantial differences occur between individual deposits, both in mineral abundance and spatial distribution. These deposits are considered to be volcanogenic, roughly similar to volcanic-hosted massive sulphides (VHMS). However, our major conclusion is that the Iberian type of massive sulphides must be considered as a VHMS sub-type transitional to SHMS. This work is an assessment of the geological, geochemical and metallogenic data available up to date, including a number of new results. The following points are stressed; (a) ore deposits are located in three main geological sectors, with the southern one containing most of the giant and supergiant orebodies, whereas the northern one has mainly small to intermediate-sized deposits; (b) ore deposits differ one from another both in textures and mineral composition; (c) Co and Bi minerals are typical, especially in stockwork zones; (d) colloidal and other primary depositional textures are common in many localities; (e) a close relation has been found between ore deposits and some characteristic sedimentary horizons, such as black shales. In contrast, relationships between massive sulphides and cherts or jaspers remains unclear; (f) footwall hydrothermal alterations show a rough zoning, the inner alteration haloes being characterized in places by a high Co/Ni ratio, as well as by mobility of Zr, Y and REE; (g) 18O and D values indicate that fluids consist of modified seawater, whereas 34S data strongly suggest the participation of bacterial-reduced sulphur, at least during some stages of the massive sulphide genesis, and (h) lead isotopes suggest a single (or homogeneized) metal source, from both the volcanic piles and the underlying Devonian rocks (PQ Group). It is concluded that, although all these features can be compatible with classical VHMS interpretations, it is necessary to sketch a different model to account for the IPB characteristics. A new proposal is presented, based on an alternative association between massive sulphide deposits and volcanism. We consider that most of the IPB massive orebodies, in particular the giant and supergiant ones, were formed during pauses in volcanic activity, when hydrothermal activity was triggered by the ascent and emplacement of late basic magmas. In these conditions, deposits formed which had magmatic activity as the heat source; however, the depositional environment was not strictly volcanogenic, and many evolutionary stages could have occurred in conditions similar to those in sediment-hosted massive sulphides (SHMS). In addition, the greater thickness of the rock pile affected by hydrothermal circulation would account for the enormous size of many of the deposits.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...