ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Annals of biomedical engineering 26 (1998), S. 28-36 
    ISSN: 1573-9686
    Keywords: Mathematical model ; Tissue factor ; Wall shear rate ; FXa generation ; TF:FVIIa ; Rat ; Vascular ; Smooth muscle ; Factor X ; Coagulation ; Clot
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract A computational model was developed to investigate the contribution of classical mass transport and flow parameters to factor X (FX) activation by the tissue factor–factor VIIa complex (TF:VIIa) on one wall of a parallel-plate flow chamber. The computational results were compared to previously obtained experimental data for the generation of factor Xa (FXa) by TF:VIIa on the surface of cultured rat vascular smooth muscle cells. In this study, the complete steady-state convection–diffusion equation was solved using the commercial software package, FLUENT (Fluent Inc., Lebanon, New Hampshire). A user-defined subroutine interfaced with FLUENT implemented the surface reaction which was modeled using classical Michaelis–Menten reaction kinetics. The numerical solutions were obtained for 12 cases which used combinations of three wall shear rates and four reaction rates. The numerically obtained fluxes for a given reaction rate displayed a wall shear rate dependence which ranged from classical kinetic reaction control (no dependence) to pure diffusional control (maximum dependence). The experimental data, however, were not represented by numerical data generated using a single reaction rate. The three numerically obtained fluxes which corresponded most closely to the experimental fluxes were determined using three different V max values. This finding supports the hypothesis that there may be a direct effect of flow on the TF:VIIa complex or the cell membrane. © 1998 Biomedical Engineering Society. PAC98: 8722-q, 8710+e
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...