ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Space science reviews 57 (1991), S. 339-388 
    ISSN: 1572-9672
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Observations of plasma and magnetic fields by Pioneer 10 and 11 and Voyager 1 and 2 reveal that MHD shocks are an important component of the large-scale solar wind structures in the outer heliosphere. This review discusses recent progress in simulation studies of the nonlinear evolution of the solar wind structures, and in particular concentrates on the theoretical development and applications of the shock interactions model. Various stream propagation models, which do not use the Rankine-Hugoniot relations to calculate the jump conditions at shock crossings, have been used to simulate the essential evolution process of isolated streams and the formation and propagation of corotating and transient shocks. They produce fairly good results in the region up to a few AU. In 1984, the shock interactions model was introduced to study the evolution of large-scale solar wind structures in the region outside 1 AU up to several tens of AU. The model uses the exact Rankine-Hugoniot relations to calculate the shock speed and shock strength at all shock crossings. So that the model can more accurately calculate the shock speeds and the accumulated irreversible shock heating of plasma at several tens of AU. The applications of the shock interactions model are presented in three groups. (a) The first group covers the basic interaction of a shock with the ambient solar wind, the formation and propagation of shock pairs, and the collision and merging of shocks. (b) The second group covers the use of the shock interactions model to simulate the nonlinear evolution of large-scale solar wind structures in the outer heliosphere. These simulation results can provide the detailed evolution process for large-scale solar wind structures in the vast region not directly observed. Two selected studies are reported. (c) Finally, the shock interactions model is applied to studying the heating of the solar wind in the outer heliosphere. The model calculations support shocks being chiefly responsible for the heating of the solar wind plasma in the outer heliosphere at least up to 30 AU.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...