All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Electronic Resource
    Electronic Resource
    Nonlinear dynamics 1 (1990), S. 91-116 
    ISSN: 1573-269X
    Keywords: internal resonance ; random vibrations ; non-Gaussian closure experiments
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper presents the experimental results of random excitation of a nonlinear two-degree-of-freedom system in the neighborhood of internal resonance. The random signals of the excitation and response coordinates are processed to estimate the mean squares, autocorrelation functions, power spectral densities, and probability density functions. The results are qualitatively compared with those predicted by the Fokker-Planck equation together with a non-Gaussian closure scheme. The effects of system damping ratios, nonlinear coupling parameter, internal detuning ratio, and excitation spectral density level are considered in both studies except the effect of damping ratios is not considered in the experimental investigation. Both studies reveal similar dynamic features such as autoparametric absorber effect and stochastic instability of the coupled system. The experimental results show that the autocorrelation function of the coupled system has the feature of ultra narrow band process and degenerates to a periodic one as the internal detuning departs from the exact internal resonance condition. The measured probability density functions of the response of the main system suggests that the Gaussian representation is sufticient as long as the excitation level is relatively low in the neighborhood of the system internal resonance condition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...